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ABSTRACT 

This report is concerned with the theoretical wave resis- 

tance of an air-cushion vehicle (ACV) traveling over water of 

uniform finite or infinite depth, in steady or unsteady motion 

Referring first to steady motion, it is shown that the un- 

realistic oscillations in the wave resistance curve at low 

Froude numbers found by previous workers can be eliminated 

by using a smoothed out pressure distribution rather than one 

with sharp edges studied exclusively in the past.  The main 

result of unsteady motion calculations is that the peak wave 

resistance in shallow water, ever in moderately accelerated 

motion, is appreciably less than the corresponding steady- 

state value.  In fact, cases have been found where an ACV 

starting from rest under the action of a constant thrust would 

seem to be unable to cross the critical depth Froude number 

on the basis of quasi-steady estimates of wave resistance, 

while the more elaborate unsteady calculations show that it 

has sufficient power to reach its final supercritical cruis- 

ing speed.  An interesting feature of unsteady motion is that 

besides wave resistance there is another mechanism transfer- 

ring energy to the free surface which is here called the dy- 

namic sustention power.  Contrary to intuition, the wave re- 

sistance in unsteady motion over finite depth sometimes be- 

comes negative at supercritical Froude numbers before finally 

approaching zero at infinite speed. 
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NOMENCLATURE 

A 

\ 

b 

c      = 

d 

D 

DA 

DM 

F 

Fd 

q 

i, j, k = 

J 

k 

ko 

KQ 

KT 

L 

L 

m - 

m. 

half length of craft 

1/2F2 

frontal area of craft 

half width of craft 

velocity of ACV 

drag coefficient 

water depth 

propeller diameter 

aerodynamic drag 

momentum drag 

Froude number 

depth Froude number 

acceleration due to gravity 

unit vectors in x, y, z direction 

propeller advance ratio 

wave number = /w2 + u2 

fundamental wave number = g/c2 

propeller torque coefficient 

propeller thrust coefficient 

length of pressure distribution 

Laplace transform operator 

mass of ACV 

mass flow into air cushj ~n 

x 



n      = unit normal to free surface, directed inwardly 

N      = propeller speed of revolutions 

p      = cushion pressure 

Po     = reference cushion pressure 

?      = power absorbed by propeller 

p«' Pn' = Köchin functions defined by Eq. (3.14).  They are 

Q   ,   Q different from the Köchin functions defined by 

Wehausen and Laitone (1960, p. 558) or  by Eggers, 

Sharma and Ward (1967), being greater by the 

factor,  cp*cos 6 . 

P2DrQ2n 
= Two-Dimensional Köchin functions, cf. Eq. (3.28) 

Q      = propeller torque 

R      = wave resistance 

s      = distance traveled by ACV 

S      - area of pressure distribution 

t      = time 

T      = thrust of propulsor 

w, u   = induced longitudinal and transv se wave numbers 

W      = weight of ACV • mg 
• 
WT     = total rate of work done on water, cf. Eq. (3.9) 

Wg     as dynamic sustention power, cf. Eq. (3.11) 
B 

W_     = power to overcome wave resistance = cR 

x, y, z = coordinate system fixed to ACV, cf. Fig. 1 

x      = longitudinal coordinate in fixed reference frame 
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a      = longitudinal cushion fall-off parameter 

ß      - transverse cushion fail-off parameter 

(n) 

Y = /qk*tanh(kd) 

e = water shallowness parameter 

C = free surface elevation 

n = propeller efficiency 

0 = wave direction with respect to the x axis 

p = water density 

p. « air density 

T = dummy time variable 

<t> = disturbance velocity potential in moving frame 

such that v = 74 

= n'th term of asymptotic expansion for <J> 

V
2D  

= i lx +   i h 

SUPERSCRIPTS 

= stationary frame variable 

= dummy variable 

- Laplace or Fourier transform 

3t 

SUBSCRIPT 

= vector quantity 

Xll 



SUMMARY 

This report is concerned with the theoretical wave re- 

sistance of an air-cushion vehicle (ACV) traveling over 

water of uniform finite or infinite depth, in steady or un- 

steady rectilinear motion. 

It is conventional in such an analysis to model the 

ACV with a given pre -e distribution applied to the free 

surface of an inviscid incompressible fluid and to use lin- 

earized boundary conditions on the free surface. 

The results obtained by this approach in the past, 

while in good agreement with measurements at high Froude 

numbers, have raised two questions of practical signifi- 

cance. First, at low Froude numbers the theory predicts 

an infinite number of unrealistic humps and hollows in the 

wave resistance curve. Second, when the depth of water is 

small compared to the length of the ACV, the steady-state 

peak wave resistance at the critical depth Froude number 

becomes relatively high compared to the wave resistance at 

the cruising speed, which is typically supercritical. 

It is shown that the unrealistic oscillations at low 

Froude numbers can be essentially eliminated by using a 

smoothed out pressure distribution in contrast to the sharp 

edged distribution used by previous workers. Moreover, 

for a rectangular distribution, this effect is mainly pro- 
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duced by the smoothing at the forward and after edges. 

In resolvinq the second question, the primary consider- 

ation was that such peak resistance can only represent a 

transient phase in the practical operation of any ACV. 

This naturally suggests tackling the unsteady motion prob- 

lem, also in the hope that in accelerated motion the ex- 

tremely long shallow water waves may never have enough time 

to build up to their peak values. 

The unsteady theory indeed shows that at reasonable 

accelerations, an ACV can pass the critical depth Froude 

number without encountering unreasonably high wave resis- 

tance. 

It is seen that in unsteady motion, besides wave re- 

sistance, there is another mechanism transferring energy to 

the free surface. This is the dynamic sustention power 

and represents the work done by the pressure against the 

relative vertical motion of the free surface in order to 

maintain the altitude of the ACV. This is quite indepen- 

dent of the static lift power required to support the air- 

cushion vehicle - even at zero speed. 

Results of several sample calculations are presented, 

including many for a two-dimensional pressure band which ..s 

relatively easy to compute, and exhibits the phenomena of 

interest in a very accentuated manner. Contrary to intu- 

ition, in two-dimensional unsteady motion, the wave resis- 

tance, and even the total rate of work done on the free 

surface (including sustention power)  become negative  at 
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some supercritical speed, before finally approaching zero 

at infinite speed. However, there should be no fundamental 

objection to this phenomenon, as the ACV is merely recover- 

ing some of the energy previously expended on the free sur- 

face. 

It is found that the Froude number at which the maximum 

negative wave resistance occurs can be predicted by an ap- 

plication of the simpler shallow water theory - in which the 

phenomenon is further accentuated. No region of negative 

wave resistance was encountered for a three-dimensional 

pressure distribution. 

Finally, several cases of the inverse problem have been 

calculated, which is aimed at determining the velocity pat- 

tern for an ACV starting from rest under the action of a 

propulsor of given thrust-speed characteristics. This is 

treated in two different ways: calculating the wave resis- 

tance in a truly unsteady manner, and on the simplified 

quasi-steady basis. All other components of drag are as- 

sumed to be strictly quasi-steady. The results show that 

the shape of the propeller thrust and torque coefficient 

curves has only a minor effect on the velocity pattern. On 

the other hand, the effect of overloading the ACV is found 

to have crucial effects on its ability to surpass the criti- 

cal depth hump. 

In this respect, the simpler quasi-steady calculations 

lead to unnecessarily pessimistic estimates of the velocity 

pattern.  Under certain circumstances in relatively shallow 
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water, the quasi-steady analysis would suggest that the ACV 

could not overcome the critical hump with the available pow- 

er, while the more elaborate unsteady calculations show that 

it has indeed adequate power to reach its final cruising 

speed. 

xvi 



1 - INTRODUCTION 

1.1 - PREVIOUS WORK:- 

The hydrodynamic aspects of an air-cushion vehicle (ACV) 

can be studied by assuming its action to be equivalent to that 

of a pressure distribution acting on the free surface of the 

water.   This idealization neglects any physical contact of 

the lower edge of the craft with the water.   It also assumes 

that the flow of air escaping under tho periphery is inviscid, 

and therefore produces no spray. 

Havelock, in some of his early papers (1909, 1914 & 1926) 

was the first to treat the theoretical problem of the wave 

resistance of a pressure distribution.  His interest in pres- 

sure disturbances lay in a desire to represent the motion of 

a ship.  As a results, most of the distributions that he chose 

to analyse were very smooth and were not typical of the ACV. 

However, later on, Havelock (1932) derived the general 

expression for a pressure distribution traveling at a constant 

speed.  In this paper, he also found the relationship between 

the pressure acting on the free surface, and the equivalent 

source distribution. 

Lunde (1951a) extended the theoretical treatment to cover 

the case of an arbitrary distribution moving over finite depth. 

Other workers have obtained numerical results for pressure 

distributions which are directly applicable to the ACV.  These 



include Newman and Poole (1962) who considered the case of 

motion in a restricted waterway such as a canal.   They cal- 

culated the two cases of a constant pressure acting over a 

rectangular area, and over an elliptical area.   The most 

striking feature of their results is the very strong inter- 

action between the bow and stern portions of the distribut- 

ion.  Particularly for the rectangular distribution (where 

the interaction would be greater), there are displayed a 

series of humps and hollows in the resistance curve.  A 

hump occurs when the bow and stern wave systems are in phase 

and combine to give a trailing wave of a maximum height.  A 

hollow occurs when the two wave systems are out of phase by 

half a wavelength giving a combined amplitude of a minimum 

height. 

The interference effects are found to be stronger for 

large beam to length ratios, as would be expected from the 

above argument, since the wave motion becomes more nearly 

two-dimensional for a wide craft. 

Barratt (1965) also computed the wave resistance of rec- 

tangular and elliptical pressure distributions, but for the 

case of unrestricted water.  His results are to some extent 

similar to those for the canal.  In deep water, the main (or 

"last") hump occurs at a Froude number given by F = 1//JT. 

In water of finite depth this hump is shifted to a lower 

Froude number; and for sufficiently shallow water occurs at a 

depth Froude number, F,, equal to unity (i.e., at the critical 

speed).   One difference between these two sets of results is 



pointed out by Newman and Poole.  For a canal of finite 

width, the theory predicts a discontinuity in the wave re- 

sistance at the critical depth Froude number.  The resistance 

is higher just below the critical speed than just above it. 

However, for an infinitely wide canal, there is no discon- 

tinuity, but there is a sudden change in slope at the critical 

speed. 

Havelock (1922) also presented some results for a very 

smooth pressure distribution over water of finite depth. 

These, too, clearly show the shift of the main hump and the 

increase in its magritude in shallower water.  Havelock's 

curves display only the main hump.  The secondary and other 

humps do not occur because of his choice of pressure distri- 

bution. 

Recently a number of experimental programs have been 

carried out in order to check the above-mentioned theoretical 

results.  Chief workers in this field are Everest (1966a, 

19 66b & 1967) and Hogben (1966a).  The main question pointed 

out in these papers is the resolution of the total drag on the 

ACV into its components.   These components are often consider- 

ed to be:  Wave Resistance, Aerodynamic Drag, Momentum Drag 

£nd Water Contact Drag. 

The aerodynamic drag (or profile drag) is assumed to be 

that resistance acting on the model if it were tested in a 

wind tunnel with the engines not running. 

The momentum drag is that due to the change in direction 

of the air supplying the cushion as it enters the fan intakes 



In fact, we should consider two components here:  Inlet Mo- 

mentum Drag, and Outlet Momentum Drag.  The outlet moment- 

um drag is associated wi th the changes in direction and ve- 

locity of the air as it escapes from the cushion, and can be 

either positive or negative, depending on the trim of the 

craft. 

The water contact drag is due to any touching of the 

lower edge of the craft, or of the skirts, with the water. 

Due to the extremely non-linear nature of this effect, the 

drag (or possibly thrust) due to spray from the cushion hit- 

ting the craft is usually included with it. 

While the first thr^e resistance components defined 

above may be studied from a theoretical approach, the water 

contact drag only lends itself to an experimental study.  To 

this end, Everest (1966a) estimated the water-wetting resis- 

tance by eliminating it - using a thin polythene sheet floa- 

ting on the water surface.  This technique, however, intro- 

duces the question about the tensile forces in the sheet. 

The resistance breakdown is further discussed by Hogben (1966a) 

where he provides a careful definition of each component. 

These experimental results were generally obtained by a 

dynamometer measuring the total drag.  Then the aerodynamic, 

momentum and water contact drag components were estimated 

and subtracted in order to make a comparison with the theore- 

tical wave resistance.  The agreement appears to be quite 

good in regard to the range in values of the wave resistance. 

However, the large scatter in the data makes it difficult to 



draw precise conclusions.  The authors suggest that, in 

addition to the main hump, they can detect a secondary and 

possibly a third one, and that these are out of phase with 

the theoretical humps by no more than 0.05 on the Froude num- 

ber scale. 

An explanation given for the non-appearance of more humps 

is based on the fact that the lower speed humps predicted by 

the linearized theory correspond to a wave pattern whose max- 

imum slope is too large from physical considerations.  Hogben 

gave a two-dimensional argument (1965) showing that the max- 

imum ratio of wave height to length is about 1/7.  This would 

preclude the development of any humps above the third or 

fourth (depending on the cushion pressure). 

Further experimental work by Everest^ Willis and Hogben 

(1968 & 1969) dealt with the wave resistance of an ACV at an 

arbitrary angle of yaw.  This problem was also studied theore- 

tically by Muichy (1970).   In these experiments, the wave 

resistance was measured directly from the wave pattern.  As 

a result there is less scatter in the data since the rather 

doubtful technique of estimating the wetting drag is elimin- 

ated.  The experimental results here are generally low com- 

pared with the theory, the difference being usually limited 

to about 10% but is occasionally as much as 50% at certain 

Froude numbers. 

The outcome of these investigations is that the main 

hump drag is relatively large in relation to the installed 

propulsive power of typical ACVs.   In addition, the prob- 



lern is more acute ir. shallow water where the thrust margin of 

some craft has been found insufficient to surpass the hump. 

It has been found necessary from speed and economic considera- 

tions to operate in the cruising condition at a Fremde number 

of at least 1.3.   This is well above the hump speed and the 

wave resistance is accordingly smaller. 

However, in a real situation, thr craft does not operate 

steauily at the hump speed.  In fact, the procedure is to ac- 

celerate through it as quickly as possible.  Under a non- 

steady condition it appears quite reasonable to anticipate 

that the large amplitude wave pattern at the hump speed will 

not have time to establish itself - thus leading to a less 

aggravated problem in shallow water.  Some experiments on a 

rectangular model by Everest (1966b) confirm this.  Under 

certain conditions  in finite depth he has found a reduced 

resistance peak. 

1.2 - PRESENT STUDY:- 

These considerations point towards a theoretical inves- 

tigation of the wave resistance during accelerated motion. 

Already, the problem for a ship has been treated by Sretenskv 

(1939), Lunde (1951b, 1953a & 1953b) and Shebalov (1966). 

These workers have derived the linearized result for the re- 

sistance, but produced no computed values.  Wehausen (1964) 

computed the resistance of a ship model with a constant ac- 

celeration from rest up to a speed which was then held fixed. 



His results, however, consist of asymptotic expressions for 

large values of the time, and there are no data for the re- 

sistance during the acceleration phase of the motion.  Wehau- 

sen's interest stemmed from a desire to know the required 

length of a model ship test before the steady state resistance 

is achieved. 

With regard to the unsteady motion of a surface pres- 

sure distribution, Havelock (1916) has computed the resistance 

of two particular distributions whose motion is suddenly es- 

tablished from rest, and then continued at a constant speed. 

On the other hand, Djachenko (1966) has derived an expression 

for the resistance of an arbitrary pressure distribution for 

a general acceleration pattern.  He also presented some re- 

sults for a two-dimensional distribution. 

The transient problem is of interest mainly for two rea- 

sons.  First, since a numerical solution to this problem will 

make it possible to calculate the resistance history as a func- 

tion of the acceleration pattern, one could expect to find op- 

timum acceleration programs that would reduce the peak wave 

resistance, or the peak total resistance. 

Second, it is of interest to examine the inverse prob- 

lem:  the resulting motion under the action of a propulsive 

device of given thrust-speed characteristics.  This is, of 

course, the more natural problem and any theoretical results 

could also be checked by experiment. 

It is believed that there is more justification for ap- 

plying the linearized theory to the transient, rather than 
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the steady, problem because of the diminished likelihood of 

an excessively steep wave system building up. 



2 - THE POTENTIAL FUNCTION 

2.1 - PROBLEM STATEMENT;~ 

The air-cushion vehicle will be represented by a pres- 

sure distribution p(x,y)  acting on the free surface, and 

traveling with the speed of the craft.  Two right-handed 

coordinate systems will be used, as shown in Fig. 1.  The 

system xyz moves with the craft, z being vertically up- 

wards and x being in the direction of the rectilinear mo- 

tion.  The second axis system x yz is fixed in space. 

The relationship between the coordinates is then given by 

* 
X = x - s(t) 

t 

= x* - j C(T) dx, (2.1) 

where c and s are the velocity of the model, and its dis- 

tance traveled, respectively. 

The velocity potential satisfies the Laplace equation: 

*2   * 
V  <J> = 0, (2.2) 

where <p       is the velocity potential in the stationary frame 

(such that the velocity is the positive gradient of the po- 
* 

tential), and V  also implies differentiation in this frame, 

If 4>  is the perturbation potential in the moving frame, we 
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may say that 

*  * 
$(x,y,z,t) = $ U ,y,z,t) , (2.3) 

if x and x  correspond to the same point in space.  From 

Eq. (2.1) we have 

1_ 
3x 

3 
9^ ' 

(2.4) 

so that Eq.   (2.2)  may be written as 

Zx   _ VZ<J> = 0   . (2.5) 

The kinematic boundary condition on the free surface re- 

quires that a particle on it remains there.  That is, 

Bt[*- ?H«^0' (2.6) 

where t,    is the elevation of the surface.  In terms of the 

moving coordinates we have 

it - It+ (u - c>k + VW+ wk - 

where u, v and w are the perturbation velocities.  Com- 

bining this with the exact kinematic condition, Eq, (2.6) , 

and substituting fcr u, v and w: 

[<t>  - ^ "  U  - C) L     - 4 L     I     =0. yz st vyx    ^x  y yj z=c 

At this stage the second order terms may be dropped, and the 

remaining terms written as a Taylor expansion about the 



11 

point z • 0: 

[• Jx-0 + [*zz]z=0 C +  • • • - L + c 5 = 0 . t     x 

Finally, the linearized kinematic condition on the free sur- 

face may be obtained by dropping the higher order quantities 

again: 

[*z]z=0 " *t + c Kx  = 0. (2.7) 

The dynamic condition on thr» surface - the Bernoulli equa- 

tion - in terms of the stationary coordinates is 

[<J>*t + ^(1> x*" + 4> J  + c * 2 . ,* 2 .  * 2 + A 
y >]z=c+p+gC*=f'  (2'8)> 

where p is the water density and g  is the acceleration due 

to gravity, while f is an arbitrary function of time. 

Again, we may drop the squared terms as these are of higher 

order.   In addition, f may be put identically to zero with- 

out loss of generality.  Also, from Eqs. (2.1) and (2.3) we 

have 

$  ss A - c 4> x 
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Thus Eq. (2.8) reduces to 

[•t " c *x]z-c + P 
+ gc * ° 

As before we may expand the first term in a Taylor series 

about z = 0 , and then drop the higher order terms to ob- 

tain the linearized dynamic condition: 

[*t " C *x]z=0 + £ + « " ° • (2-9) 

The combined free surface condition is obtained from 

Eqs. (2.7) and (2.9) after eliminating C : 

[*tt + c2*xx - 2c *xt - h  *x + * *z]z=0 = 
c Px/P •  <2-10» 

The last boundary condition to be satisfied is that 

there is no flow thr«. agh the water bed: 

[*Jz~d • ° ' (2-n) 

where d is the depth of the water. 
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2.? - SOLUTION FOR THE POTENTIAL:- 

The solution of this set of equations can be obtained by 

an application of the double Fourier transform pair: 

co oo 

f(w,u) -4- dx dy  f(x,y)   exp(~i(wx  +  uy)) 

»00 —00 

00 00 

(2.12) 

and    f(x,y)   = *r 
1 
2TT 

dw du f(w,u)   exp   (i(wx + uy))    , 

•oo —co 

and the Laplace transform pair: 

f(q) = f(t) exp(-qt) dt 

and 

6+i< 

f(t) = 
1 
77T f(q) exp(qt) dq,      (2.13) 

6-i00 

6 being a positive constant. 

Using the rules for transforming a derivative, the La- 

place equation (2.5), under the transformation (2.12), be- 

comes : 
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(iw) 2(|> +   (iu) 2<j> + ^      = 0   , 

where $ =  4>(w,u;z,t) 

Hence 4),,  - k2<j> - 0   , z z 

where                                     k2  = w2 + u2   . (2.14) 

A solution for $    is 

<j> - A(w,ujt) cosh(kz + B(w,u;t)) , (2.15) 

where A and B are, at the moment, arbitrary.  B may be 

found by transforming the bed condition, Eq. (2.11), giving 

P Jz=-d - ° ' 

and substituting Eq. (2.15).  Thus 

A*k«sinh(kz + B) L__d • 0 , 

giving B = kd 

and <|> = A cosh(k(z + d)) . (2.16) 
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Applying now the Fourier tvansferm to the combined free 

surface condition, Eq. (2.10), and using  <f> given by Eq. 

(2.16), we obtain 

[ A  «cosh(k(z + d) ) + c2 (iw) 2A»cosh(k(z + d) ) 

2c*iwA. *cosh(k (z + d)) - c iwA'cosh (k (z + d,' 

J z=0 + gk»sinh(k(z + d)) | „_n = ciwp/p . 

Or, more simply, 

A . - 2icwA + A(yz - c2w2 - icw) = icwseen*kd) • £ f   (2.17) 

in which y2 • 9k tanh(kd) . (2.18) 

A substitution that makes the coefficients in Eq. (2.17 

constant has been found by Lunde (19 51b).   It is 

A(w,u;t) = x<w'u'#t> exp(iws(t)) .      (2.19) 

After putting this in Eq. (2.17), and some simplification, 

one obtains 

X.. + Y2X - icw sech (kd) *°»exp (-iws (t)) . 
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We now take the Laplace transform, Eq. (2.13), of the 

previous equation to get 

(q2 + Y2) X = iw«sech(kd) •E-"L(c*exp(-iw«s(t))) , 

where L    is the Laplace transform operator.  Thus 

X = i*^E.'sech(kd) *L(sin yt) «L(c«exp (-iws (t))) . 

Using the convolution cheorem to perform the inverse 

Laplace transform of this, we obtain 

v = i.52ü.sech(kd) 
*    PY 

c(T)'sin(y(t - i)) »exp (-iws (x)) dx . 

Eqs. (2.19) and (2.16) are now used, together with the 

above equation, to yield 

~    wp cosh(k(z + d)) I  , .  . , .    . . 
* = 1#p? cosh(kd)   c(T).sm(Y(t - T)) 

•exp(iw(s(t) - S(T)P dx .   (2.20) 

The double Fourier transform, Eq. (2.12), can be used 

to express p in Eq. (2.20) in terms of p, and then the 
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invers3 transform is taken to give the disturbance potential, 

cb , in terms of the moving coordinate system,  xyz : 

00 00 

<f>(x,y,z,t) = 
4T:

2
P 

p1 dS C(T) dx dw ! du 

•00       — 00 

wcosh(k(z + d))    . [ r\—I—u /, -,v tJ_ »1 — ——«slid /gk«tanh(kd) • (t - T) • 
/gk«tanh(kd)»cosh(kd) 

•exp|i(w(x - x' + s(t) - S(T)) + u(y - y')) 1 .  (2.21) 

Here k2 = w2 + u2  as before, and p' = p'(x',y') , defined 

over the area S' , while x1  and y'  are dummy coordinates 

in the moving reference frame. 



3 - THE WAVE RESISTANCE AND SUSTENTION POWER 

3,1 - DEFINITIONS;- 

In this section expressions for the wave resistance will 

be derived.  Also the computer studies showed that under cer- 

tain circumstances this resistance could become negative. 

Hence it is of interest to examine the total rate of energy 

input to the water, as well. 

Using the stationary frame of reference, the wave resis- 

tance may be defined as the horizontal component of the cush- 

ion pressure force acting on the free surface.  Thus 

R = 
* *      *    * 

p (x ,y,t) c x* dx dy , 

where the superscript    indicates that the variable is 

given in terms of the fixed frame.  This formula may be ex- 

pressed in the moving frame as 

R 

S 

p(x ,y) ^x dx dy . (3 .1) 

13 
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Now the power input to the water (in the fixed frame) 

is 

wT = 
*  *       *  *   * 

p (x ,y,t) n «v ds  , 3.2 

where n is the unit normal vector at the free surface and 

directed inwardly, and v is the velocity of the particles 

of water on the surface.  By definition 

n* = <C* * i + C*v 3 " k)M + U* *)2 + (c* )2 (3.3) x. y ~ x y 

and 
*   *       *      * 

(3.4) 

In the stationary reference frame, the kinematic con- 

dition on the free surface is 

D       *  * 
— (z - c (x ,y,t) = 0 , 

. Z^S 

[ 1 **z - «V **x* - <=*y **y " ^t\  z=e    : ° '     (3'5 A, 

In addition, we have 
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*        *      /        *     2        *   2 
dS  = dx dy A  + U *)  + U „)  . x y 

(3.6) 

If we now combine Eqs. (3.2) to (3.6), we obtain 

wT = - 
*  * *   * 

p (x ,y,t) C t dx dy (3.7) 

A transformation to the moving frame is now in order, 

and using the relation 

S t = «t " C ^ (3.8) 

the final expression for the total rate of work done on the 

water results: 

Note that ehe expressions for the resistance and total 

power (Eqs. (3.1) and (3.9)) are exact - they have not been 

linearized.   The total power contains the power required to 

overcome the wave resistance: 
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WR = c R . 3.10) 

The other part of the total power we shall call the sus 

tention power: 

• 
, 

ws = - p(x,y) C    dx  dy   . (3.11) 
, 
s 

Thus the sustention power represents the rate at which 

work is done by the cushion pressure against any vertical 

motion of the free surface, and is positive for an average 

downward movement.   This power term should not be confused 

with the power required to provide the air cushion.  The 

sustention power would come from changes in gravitational 

potential energy of the ACV, as it heaves and trims during 

the unsteady motion.  During steady motion, the position of 

the free surface does not move relative to the craft.   In 

this case the sustention power is zero. 
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3.2 - WAVE RESISTANCE:- 

We use Eq. (3.1) defining the resistance, and the dy- 

namic condition on the free surface, Eq. (2.9). 

R-i 
g P l[C *xx " *tx] z=0 - ?x/p dx dy . 

After integrating with respect to x , the last term in 

the integrand gives 

1 
2P? 

[p2(x,y)] 
-i x=-°° 

dy , 

which  is   zero  for  any  typical distribution.       We may now sub- 

stitute  the  expression   for    <J>     given by Eq.    (2.21),   and  af- 

ter  some reduction,   obtain 

R = 1 
TÜTpg p dS p'   dS' 

00 00 

C(T)     dT dw du 

S' —00 —00 

( 
tT'cos /gk* tanh(kd)* (t - T)   • 

) 

•exp[i(w(x  -  x'   +   s(t)   -   s(x))   +  u(y  -  y')) 1   . (3.12) 
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Since we only require the real part of this equation, we 

rewrite the exponent factor as 

factor = cos w(x - x' + s(t) - S(T)) + u (y - y') 

= cos w(x - x') + u (y - y1) »cos w(s(t) - S(T)) 

- sin w(x - x') + u (y - y') -sin w(s(t) - S(T)) 

The second term on the right Land side is odd with respect 

to the pair x - x'  and y - y' , and therefore contributes 

nothing to the integral.  Expanding the first term, now, 

= ros (w factor • ros(w(x - x'))•cos(u(y - y')) 

• cos w - sin(w(x - x'))«sin(u(y - y')) «cos w(s(t) - S(T 

This time the second term is odd with respect to w and u , 

and therefore gives no contribution. We may expand the fac- 

tor a third time to yield 

•[ factor = cos(wx)«cos(wx1) + sin(wx)«sin(wx') 

continued over' 



>A 

cos(uy)«cos(uy*) + sin(uy)•sin'.uy') * in(ay')1 

>cos w(s(t) - S(T)) ]• 

If we place this factor back into Eq. (3.12), the de- 

sired expression for the resistance is obtained: 

OO       CO 

R = 
TT- pg 

C(T) di dw 2 r.  2 

Ö I 

du wlP z + P *   +  Q L  + Q L   x e    o   ve    o ' ] 

xcos|/gk^tanh(kd) • (t - x) j.cosjw (s (t) - S(T))1 , (3.13) 

where     e = p(x'y) sin(wx) sin(uy) dx dy 

o . J 
S 

(3.14 

Q. 
and 

Q o 

.   v sin.     ,   cos,  v ,     j 
p(x'y) cos(wx) sin(uy) dx dy 

IL is interesting to compare Eq. (3.13) with the ex- 
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pression obtained by Lunde (1951b) for a ship.  An addi- 

tional term consisting of a fourfold integral, and being sim- 

ply proportional to the instantaneous acceleration, occurs 

in his formula.  It represents a type of added mass, and is 

zero if the singularity distribution lies on the free sur- 

face.  This is the case of a pressure distribution. 

3.3 - TOTAL POWER:- 

The total power is defined by Eq. (3.9).   Using the 

kinematic condition, Eq. (2.7), the power may be written as 

wT = - [•Jz-0 dx dy . 

The equation for     <J>  ,  Eq.    (2.21), is now substituted to 

give 

CO CO 

w„ = -1 
T       47r2pg p dS p'  dS C(T)  di dw du 

•co — co 

w/gk»tanh(kd) «sin  /gk»tanh(kd) • (t -  x) 

•exp i(w(x - x1  + s(t)   - s (T) )   + u (y -  y •••]• 



Tl.J. •'X[d·l·~:.:;i.Jn tnay nmv be simplified inn manner iden-

tic<1l tc• t'::1t. used on Eq. (3.12) for the resistance. We 

then <:'b t· :1 L:; • or lh<' total rate of \vork done on the water by 

tl1t· t)r~_·;~. t~I\·: 

, .. _____ -----·· .. --------·----·-----------

1 

I '' ... 
I 

\' 

' I 

I" 
. I p . 
! <' 
'-

'- i) ·' + (\ -']x 
· ..... t~. "'o 

Eq. t~\. :.'.} :".· :ettinc: the vclocit:--/ of the mcdel be constant 

;·.·,:: • ·:<:.tmt• 1 c:, if we take tlw velocity of 

'r,,. in l<~·.rrc~ 1 in Eq. ( 3. 1 3) may be carried 

1 '·I 

BEST AVAILABLE COPY 
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R = 27T2pg 
w2 dw duP2+p2+Q2+Q2 

L e *o e o 

fsin(Y + wc)t + sin(y - wc)tl ,3  16» 
k|_ Y +  wc y  - wc     J   ' 

with Y2  =  gk-tanh(kd) 

=  g/u2  + w2»tanh(/u2  +  w2«d)    , 

as before. 

We want to know the value of R for very large time. 

As  t -• oo , the oscillations (about zero) due to the sine 

terms increase, so thc.t there is no contribution to the in- 

tegral except when 

Y - w c = 0 . 3.17 

Eq. (3.17) gives the relationship between the trans- 

verse and longitudinal wave numbers for waves which travel 

at the speed of the model.   We may now quote the following 

result from Wehausen (1964) or Wehausen and Laitone (1960, 

p. 477): 
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lim 

b 

Ux) sin (x - x ;)t 
X  -  X o 

dx-nt(xo)  if  a < xo < b 

It is required here that  f  is smooth in the neighborhood 

of  x = x0 , and that  f(x)/x  is absolutely integrable in 

the range.   The theorem below may then be derived from this 

result: 

lira 
t  * oo 

f(x, iin^OOt dx |j|p dx = 7T I  f (x.)/|g'(x.) 1,(3.18) 

where x.  are the zeros of  g(x) , assuming that a < x. < b 

and g'(x.) ^ 0 . 

First we rewrite Eq. (3.16) in terms of polar coor- 

dinates : 

w = k cos 6 , 

u = k sin 0 . (3.19) 

Mw,u) _ , 
TTkTöT ' K ' 

and then apply the second theorem to the k  integral.   It 

is seen that if 

9(k, Y - w c , 
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or g(k,6)   =   /gk»tanh(kd)   -  ck-ccs   6   , 

then |j£ g(k,9) I  = ^c-cos  6 fl  - knd*sec20'sech 
2(kd)J , 

where k is the solution of 

k - k0 sec
20»tanh(kd) = 0 , (3.20) 

with k0 = g/c
2 . (3.21) 

If we now make the necessary substitutions detailed 

above, Eq. (3.16) reduces to the following single integral 

for the resistance of an ?VCV during steady motion: 

TT/2 

R = 
1 

TTpg 
k3 cos 6 

1 - k0d«sec2e«sech2(kd) 

(• 1 e    o    e    o do . (3.22) 

Here the lower limit for e is taken as  e, , the 

smallest positive value of  6 which can satisfy Eq. (3.20) 

for a real k .  It is given by 



30 

i = 0 for k0d > 1  (subcritical speed) 

(3.23) 

= arccos .ITgd  for  k 0d - 1  (supercritical speed) 

Fq. (3.22) is the same as that given by Barratt (1965). 

It may also be reexpressed as an integral with respect to the 

wave number  k , through the connecting relationship given by 

Ec (3.20) .   The result is 

R = k tanh(kd! 
2^rpg /l - k„ tanh(kd)/k [ P 

l   + P 2 + Q z + Q 
e    o    e    o 

ki 

!i dk 

(3.24 

Here  k(  is given by the solution of 

or 

k] = kg tanh(kjd)  if k0d > 1 , 

ki = 0 if k0d < 1 . 

(3.25) 

It may be noted in passing, that we could obtain the 

steady state value c^ the total power, Eq. (3.15), in a sim- 

ilar manner.   In that case, after integrating Eq. (3.15) 

with respect to time, we would get the following expression, 

instead of Eq. (3.16): 
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W. =       c 

T       27T2pg 
w dw du  V-   P   2  +  P   2+Q   2+Q   2 1   |    e o e wo    | 

x 

[sin(Y + wcjt      sin (Y  - wc) t"[ 
Y + wc Y   " wc      I   " 

As in the case for R , the only contribution to W  , 

as  t •*• » , is given by the second sine term.  And this 

occurs when Y 
= wc •   It is clear then, as the steady- 

state condition is achieved, that 

WT = cR 

-  WR ' 

as required. 

3.5 - TWO-DIMENflONAL WAVE RESISTANCE:- 

It is of interest to study the wave resistance of a two- 

dimensional band of pressure since this shows up clearly the 

interference effects of the transverse wave system. 

A possible method of solving this problem would be to 

set up a two-dimensional analog of Sec,(2) - for the potential, 
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I , - and then solve this.   However, it is simpler to con- 

sider a pressure distribution independent of y , and then 

let the beam approach infinity.   Thus we assume that 

p(x,y) = P2D<
X)  for -b < y < b .        (3.26) 

The Köchin functions (see also the Nomenclature), 

Eq. (3.14), become 

P = 2 sin(bu) 
e M    u    *2D ' 

P  = 0 , o    ' 

0 = 2 sin(bu) Q üe      u    Ü2D 

3.27) 

and Q = 0 , 

where the two-dimensional Köchin functions are given by 

P2D 

Q2D   | P2D(X» s?n(WX> * < (3-23' 

L being the length of the distribution. 

Let us now consider the u integral in Eq. (3.13) for 

the wave resistance. We have, for the wave resistance per 

unit width, 
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R2D  =   R/2b 

7T2pg C(T)   <3T w2.f] dw w2'lP2D2   +  Q2D2 

1  w xcos w(s(t)   -  s (T))   * ]• 

+ 

L    6     l'/JE J 

cos   /gk-tanh(kd) • (\. -  x) I ^  sin:(bu) 
J bu2 du   , 

in which we have broken the    u    integral into two subranges 

as  indicated.       After a change of variable,   the first of 

these    u    integrals becomes 

/b 

Ii   =  2 cos l^/w2  +   «j)2/b2.tanh(^2  +   £2/b2.d).(t  -   T)l 

sin'A A. 
x—-J d<{>  . 

As    b + oo  ,   this  simplifies  to 

:   /gw I,   =   2  cos   /gwtanh (wd) • (t -   T) ] sin 
d<f> 
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This intoqral is given, for example, in Giadshteyn and Ryzhik 

(I960, p. 414, 3.741, Formula 3).   Thus 

i A I i - Ti cos /gw*tanh(wd) • (t - i ]• 

We shall now examine the second of the  u  integrals, 

I2 .   It is easily seen that 

2 1 _ bu' 
du = 2//b 

l//b 

Thus, as b -v '» ,  12 = 0 . 

The formula for the two-dimensional wave resistance may 

now be written as the following double integral: 

R 2D eg 
C(T) dx W2» 1 dw w  I P2D

2 + Q2D
2 |x '] 

*cos >gwtanh(wd)~.(t - x) .cos[w(s(t) - S(T))1. (3.29) 
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3.6  -  TWO-DIMENSIONAL TOTAL  PQV7FR:- 

The procedure for finding the limiting expression for 

the total power, Eq. (3.15), in the case of two-dimensional 

flow, is identical to that given in Sec*. (3.5).  The result 

is 

w, T2D Trpg C ( T )    d T dw w/gw«tanh(wd)•   P0   '   + Q 2D f2D 

xsin in   /gw~ tanh(wd)*(t -  T •sin w (s(t)   -  S(T)) ]• 

(3.30) 

3.7 - TWO-DIMENSIONAL STEADY-STATE WAVE RESISTANCE:- 

We now derive the two-dimensional limit of Eq. (3.22). 

The procedure followed is similar to that in Sec. (3.5) and 

the result is 

R 2D " pg [1 - kod«sech2(kd)] P2D2 + Q2D2 

k being the solution of k = k0 tanh(kd) . 

(3.31) 

(3.32) 
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If  kod   1  (the supercritical speed condition), then 

there is no real solution of Eq. (3.32), and the wave resis- 

tance is zero. 



4 - STEADY-STATE RESULTS 

4.1 - PRESSURE DISTRIBUTION USEDr- 

As mentioned in Sec. (1), it was feit that it would be 

necessary to allow the cushion pressure to drop to zero wi- 

thin a finite distance at the periphery of the craft.   The 

actual details of this fall-off are discussed by Hogben (1966b) 

and Alexander (1967) for a periperal jet ACV, and by Jones 

(1966) for a plenum chamber machine. 

However, it is unlikely that the precise way the pres- 

sure drops to zero is crucial.  Rather, the essential para- 

meter is a measure of the fall-off distance.   The restric- 

tion of planform shape to a rectangular one was made, since 

the smoothing effects of an elliptical design were studied 

by Barratt and Newman.  The general pressure distribution 

given below allows the fall-off distances to be individually 

varied: 

p(x,y) = -T  po  tanh a(x + a) - tanh a(x - a) x 

x tanh 3(y + b) - tanh ß(y - b)  .    (4.1) 

Here p0  is the nominal pressure,  a  is the half-length 

and b is the half-beam.   The smoothness of the cushion 

37 
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pressure full-off at the edges is a function of the fall-off 

parameters  i and  jj .   A large value of  a implies a 

rapid drop at the bow and stern edges.   On the other hand, 

if    is large, then the cushion pressure decays rapidly at 

the sides.   This function is shown in Fig. 2. 

As a particular case, we may consider the limit as 

ß -* °° .   Then the pressure is given by 

p = T p0  tanh a(x + a) - tanh a(x - a) 

for  -b < x < b (4.2) 

= 0 otherwise. 

This could represent a so-called sidewall air-cushion vehicle 

or captured air bubble (CAB).   In these craft, the cushion 

is physically restrained at the sides so that the pressure 

falls abruptly. 

Another particular case occurs when both a * °° and 

3 -> * .   Then 

p = Po  for -a < x < a 

and  -b < y < b (4.3) 

= 0  otherwise. 

Vhis case of a constant pressure acting over a rectangular 

area is one commonly used by previous workers. 
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It is advantageous to obtain analytic expressions for 

the Köchin functions, Eq. (3.14). Due to symmetry in the 

chosen expression for p , it is clear that 

P  = Q  = Q  = o . 
o   e   o 

(4.4) 

Furthermore, Eq. (4.1) allows us to compute P  as the pro- 

duct of two separate, but similar, integrals over x  and y, 

respectively.   The contour used for evaluating the integral 

is shown in Fig. 3.   We write the x  integral as 

I  = Beal 
«fa 

tanh a(x + a) - tanh a(x - a^ IWX , e   dx (4.5) 

Because of the finite lengths of the paths of integration 

for Ii  and I3  in Fig. 3, it is clear that as M -> °° , 

Ii = 13 • 0 .   Also, along C2 , points corresponding to x 

on C  are given by x + in/a .   It can then be shown from 

Eq. (4.5') that 

m  _  e-•/a j m (4.6) 

There are two simple poles lying inside the contour, 

and after applying the usual residue theorem, and some sim- 

plification, it is found that 
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!  , 2_" sin(aw) 
x    . sinn (TTW/2 I) 

The  y  integral in  P4 may be written down by inspec- 

tion, so that the final result for the Köchin function is 

D  - ^    T sin (aw)     TT sin(bu) ,. „ 
e " Po x  sinh(Tiw/2.,) "ß sinh(Tru/2ß) *        ^'ö 

P  has well defined limits for the cases specified by 

Eqs. (4.2) and (4.3). 

Finally, by integrating the pressure distribution, one 

obtains the weight of the ACV: 

W = 4 p0 ab . (4.9) 

4.2 - NONDIMENSIONAL COEFFICIENTS:- 

The wave resistance coefficient used is defined by 

R  = §.£Sä , (4.10) 
c   W  p0 

and the power coefficient by 

W  = \.*^ (4.11) 
c   W pi 
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4.3 - RESULTSt- 

The programs used for computing the steady-state resis- 

tance are documented by Doctors (1970, Sec. (10.1)). 

Some curves for the wave resistance are shown in Figs. 4 

to 7 inclusive.   In these diagrams, the variable used for the 

abscissa is A = 1/(2F2) .  This results in the low speed 

interference oscillations having a period approaching a con- 

stant value of 2-i . 

With regard to the ordinate, an arcsinh scale is oc- 

casionally used to improve the presentation of the results. 

This transformation is defined by 

y = Cj arsinh(C2y) , (4.12) 

where y is the number to be plotted and y  is the distance 

on the figure.  Cx     and C2  are constants. 

In Fig. 4a, the eff?ct of smoothing on a two-dimensional 

pressure band, that is, reducing the value of the parameter 

aa , is illustrated.   For  aa = » , we have a sharp pressure 

distribution and the amplitude of the oscillations ^f the 

wave resistance remains unchanged with increasing A  (de- 

creasing speed).   The theory predicts an infinite number of 

these oscillations between zero speed and any finite velocity. 

The curve is a sine wave and this result was obtained by Lamb 

(1932, p. 403). 

For finite values of the pressure fall-off parameter, 

aa , the oscillations die out with decreasing speed.   If 



.a = 5 , then there are only three major humps.  The humps 

and hollows are caused by the im^rference of the bow and 

stern «rave systems, which are purely transverse in this ex- 

ample.  The interference is not affected by the smoothing. 

However, the smoothing reduces the amplitude of the waves 

generated hy the bow and stern. 

rig. 4b shows the effect of smoothing a two-tiimecsionsi 

pressure band for a finite depth.  The resistance is zero 

for supercritical speeds (when F. > ) ) because free waves 

cannot travel faster than the critical speed. 

Three cases are illustrated in rig. 5a.  Case 1, with 

ja = ;a «• « , represents a sharp precsu-re distribution with 

a beam to length ratio of O.S traveling over deep water. 

Vhe unrealistic oscillations obtained by previous workers are 

confirmed.   It should be noted that for low speeds the amp- 

litude of the oscillations asymptotically approaches unity - 

the same as for the two-dimensional case.  Thus the trans- 

verse waves become relatively more important in this speed 

range.  Case 3, with  ^a - 5a - 5 , has smoothing applied 

on ail four edges, and once again, only about three or four 

humps occur.  While typical values of  ia and 5 a would 

have to be found from measured pressure distributions, this 

curve could represent an actual ACV.   Finally, Case 2 only 

nas smoothing at the bow and stern - equivalent to a side- 

wall ACV.  The result is alaost the same as for Case 3, 

showing that the wave pattern is essentially produced by the 

fore and aft portions of the cushion - and not the sides. 
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The effect of smoothing equally on all four edges is al- 

so displayed in Fig. 5b.  The sharply etiged case is compared 

with those of three different amounts of smoothing.   The dia- 

gram shows that for  1a * $a > 5 an unnaturally large nuia- 

ber of lew speed hasps and hollows occur. 

Fig. 5c shows the sasae three cases of Pia. 5a.- but for 

a finite depth.  The chief difference now is that the sain 

hump is pushed tc the right and occurs near the critical depth 

Froude number.  The low speed humps are only r-arginaiiy af- 

fected. 

The effect of varying the bean to length ratio is de- 

picted in Pig. 6.   Fig» 6a is for decr> water.   The general 

effect is an increase in the maxima of the resistance coef- 

ficient for increasing bean, since the transverse waves as- 

sune greater importance as the two-dimensional case is ap- 

proached.  At the sane time, the ninima are reduced for the 

same reason.  A secondary effect is a shift in the location 

of the oscillations.  As the beam increases, this shift is 

to the right (i.e., to lower Froude numbers).   In the two- 

dimensional limit the hollows occur precisely at values of 

A = n^ , where  n  is an integer. 

The result of varying the beam is again shcv.r. in "ic. fl-», 

but now for a finite depth.   Similar effects are shewn in 

the low speed range, away from the neighborhood of the cri- 

tical speed.   However, the position of the critical speed 

hump is hardly affected.  For finite beams it occurs at a 

slightly lower speed than for the two-dimensional case. 
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Fig. 7 illustrates the result cf varying the depth of 

water.   Each ot tne five diagrams is for a different beam 

tc length ratio.   They show how the critical depth hump 

resistance increases with decreasing depth.   For the two- 

dimensional case, this peak resistance varies as the inverse 

square of the depth.   However, for finite beam to length 

ratios, this maximum drag uoes not increase nearly as rapidly 

in shallow water. 

Another aspect brought out by these diagraz&s is the rate 

at. which the resistance curves for different depths, but the 

same beam, converge at large values of A .  Thus, for 

values of A greater than  3 , the case of d/a • 1  is in- 

distinguishable from the deep water case.  And at d/a • 0.5, 

the resistance curve is essentially the same ah  that for any 

greater depth, provided that A is greater than 6. 



5 - CALCULATIONS FOR ACCKLL'RATLD MOTIO:.' 

5,1 - TWO-DIMENSIONAL RL5ÖLTG:- 

Sample results for accelerates motion are shown in 

Figs. 6 to 18.   All i;ut Fig. 9 were computed by programs lis- 

ted by Doctors (1970, Sec. (10.2)).  Although tneja procra':? 

can .aaridle general acceleration patterns, only calculations 

corresponding to a constant acceleration arc presented »ere. 

Various two-dimensional results are given in Figs. 8 

to 12.  Fig. 8 shows the effect of varying the level of ac- 

celeration for a smooth pressure band over deep water. 

There are only two humps displayed when the acceleration is 

ncn-zero.  The third and higher order humps have been smooth- 

ed out by the unsteady motion.  Furthermore, with increased 

acceleration up to 0.2g , the second last hump is also prac- 

tically lost.  The last or major hump is also somewhat re- 

duced, but evidently any significant reduction can only be 

achieved by an application of an unnaturally high accelera- 

tion. 

The location of the humps is also affected by the ac- 

celeration.  With increasing acceleration, the oscillations 

are delayed to higher Froude numbers. 

The case of a sharp two-dimensional pressure band is 

shown in Fig. 9.  A complete curve could not be computed be- 

cause of the (apparently) infinitely many oscillations that 

45 
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occur in the region where A  is just less than  5  (for the 

case of c/g -  0.05).  The last two humps, and the last 

hollow, correspond in position with those displayed for a 

smooth pressure band in Fig. 3.   Thus, the smoothing does 

not affect the positions of the oscillations - as was also 

evident for steady motion. 

The resistance coefficient is constant and equal to 

unity for A > 5 .  The significance of this point lies in 

the fact that the ACV has traveled one craft length when 

A = 5 , at an acceleration of 0.05g . 

From geometrical considerations, it is clear that there 

can be no  interference effects between the bow and stern 

transverse waves until the craft h?s moved this distance. 

Up to this point in time, the bow and stern individually pro- 

duce a wave train of varying wavelength (depending on the in- 

stantaneous velocity), but of constant amplitude.  Let us 

call this amplitude £o .  Then, before the band has moved 

one length, there are two wave trains produced, each con- 

taining energy per unit area proportional to  Co2 •  The 

wave resistance of the two waves in this speed range is then 

proportional to 2^0
2 , and is constant. 

When the band has traveled one length, the stern waves 

of finite wavelength start to run into the bow system that 

was produced at the start of the motion.  These latter waves 

have a vanishing.ly small length.  As a result, there is an 

infinite accumulation of the interference oscillations in 

the resistance curve just to the left of A = 5 . 
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However, later on in the motion, the two wave systems 

have a relatively more similar wavelength, or frequency, and 

then have a capability of combining to give a maximum amp- 

litude of almost 2£c , or a minimum amplitude near zero. 

Hence, the wave resistance can fluctuate between (  0) 2    and 

(~2£o) 2 at the higher speeds.  So the jeak interference 

resistance is almost twice as high as the constant value oc- 

curing before the band has traveled one length. 

For a general acceleration level, the point where the 

oscillations start is given by 

Ai - g/4c . (5.1) 

Hence, for higher accelerations. A] is smaller and the os- 

cillations ara displaced further to the left.  This explains 

the general effect of acceleration on the location of the 

humps and hollows in Fig. 8. 

Resistance curves for a smooth distribution appear again 

in Fig. 10, but the water now has a finite depth.  The re- 

duction in magnitude of the peaks is eveii more marked.   In- 

deed, wnile the maximum steady-state resistance increases 

without limit in shallower water, the peak resistance coef- 

ficient for accelerated motion is more nearly fixed.   Thus 

the relative reduction during unsteady notion is accentuated. 

The location of the unsteady finite depth humps is af- 

fected in the same way as in deep water, being delayed to a 

higher speed. 
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The most striking phenomenon, however, is that for all 

the finite depth cases studied, the wave resistance becomes 

negative beyond a certain velocity.   The resistance then 

asymptotically approaches zero from below. 

Other interesting features of the two-dimensional case 

are presented in Figs, 11 and 12.   These show the total 

power, resistance pewer and sustention power - which were 

discussed in Sees.(3.1) and (3.3).   The total power, being 

the sum of the other two, represents the total rate at which 

work is being done on the water.   It was computed in order 

to see if it remained positive when the resistance became 

negative.  Fig. 11 shows these three powers as a function of 

time, for different acceleration levels over deep water.   It 

is seen that a hur.p in the resistance power or total power 

curves generally corresponds  to a hollow in the sustention 

power curve.   It may also be noted that the sustention 

power is relatively small compared with the two other quan- 

tities. 

Passing now to the case of finite depth, Fig. 12, we 

notice that the total power also becomes negative, and at 

approximately the same point in time as the resistance chan- 

ges iign.  In shallower water, these two points approach 

each other.  At a depth to half-length ratio of 0.25, the 

points where the total power and resistance power become 

negative are indistinguishable. 

In interpreting the occurrence of negative total power, 

it should be borne in mind that the total energy input to the 
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water, integrated from zero time, is always positive.   How- 

ever, at very high speeds the ACV begins to recover from the 

wave pattern some of the energy previously expended in form- 

ing it.   The location of the negative hump in the resistance 

curve is further discussed in Sec. (6.6). 

5.2 - THREE-DIMENSIONAL RESULTS:- 

Some computed cases for a three-dimensional pressure 

distribution are shown in Figs. 13 to 18. 

The resistance over deep water is shown in Fig. 13. 

The similarity to the two-dimensional analog in Fig. 8 is to 

be noted.  The three-dimensional resistance is generally 

about half that of the two-dimensional case (for this beam 

to length ratio).  Also the oscillations occur at slightly 

higher Froude numbers, due to the additional effect of the 

diverging waves.  These same two differences display them- 

selves in the steady-state results in Fig. 6. 

The influence of acceleration on the resistance of a 

three-dimensional ACV over finite depth (Fig. 14) is seen to 

be remarkably less than for the corresponding two-dimensional 

situation.   Again, it must be remembered that the steady- 

state two-dimensional results showed stronger phenomena than 

the three-dimensional ones.   Principally, these were stronger 

interference oscillations, and zero resistance beyond the 
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critical spued. 

Of chief interest in Fig. 14, compared with Fig. 10, 

is the lack of any speed range in which the resistance is 

negative.   This indicates that the transverse component of 

the wave pattern is less important than the previous steady- 

state results implied. 

Th(- three-dimensional results, nevertheless, show a 

substantial reduction in the peak resistance during acceler- 

ated motion, particularly for the shallower situations. 

Beyond the last hump, the curves of resistance for dif- 

ferent levels of acceleration converge rapidly, as the speed 

increases. Beyond A = 0.5 (F = 1.0) the acceleration has 

little effect. 

For the sake of completeness, curves of total power, 

resistance power and sustention power are given in Figs. 15 

and 16.  The deep water case (Fig. 15), again, is similar 

to the two-dimensional case in Fig. 11.  The finite depth 

results in Fig. 16 do not differ considerably from the deep 

water results of the previous figure - in contrast to the 

two-dimensional results discussed before.   In finite depth 

the three-dimensional sustention power approaches zero some- 

what faster that in infinitely deep water. 

A comparison of the resistance power for different rates 

of acceleration is made in Fig. 17 (deep water) and Fig. 18 

(finite depth).   For accelerated motion ov^r deep water, 

there is a slight increase in peak power to overcome resis- 

tance.  This is because the resistance peaks remain essenti- 
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ally the same in magnitude, but are shifted to a higher speed 

At a depth to half- length ratio of 1.0, the resistance 

power peaks are also higher in accelerated motion.  A sig- 

nificant reduction in the maximum resistance power occurs 

only at a depth to half-length ratio of  0.25. 

Thus we have a situation in which the resistance hump is 

considerably diminished in water of finite depth.  However, 

the new location of the hump greatly reduces  any saving in 

the power needed to overcome it. 



« - w^*?c*Tifli OF ssAUxv *wr» 

*.*   -  r^MBU:- 

It  is well known that the first-orJer shallow water 

?»*--r     : rodeo i  Um  realistic results  f-r  *>-.:r   MM resis- 

tance than the linear iaed theory for  finite depth.       Ham 

lichell   Clt*2)   and Tec*   fl9**i  shewed that  it predicted zero 

resistance for 9 bo*y travelin? at   less thau the critical 

spee>i.       The advantage  is shallow water   theorc lies  in the 

possibility of ext«ndi&4  it  to obtain hicher order £pcroxi- 

wations to the flow, wfcere the oonplexitr cf the finite deoth 

results would rreclud«   this. 

The theory was eeployed in this case to predict the 

location of the negative resistance suep displayed in the en- 

steadv twc-dise^si'vnal  results. 

The procedure  is essentially  the szxe as  for the case of 

finite depth,   since  the s*»e set of  equations,   nanelv  Ecs. 

'2.5).   (2.7),   (2%9)   asad   12.113.  are to "oe satisfied. 

in the spirit cf  the shallow water approximation, we 

shall  assjsoe ar. asy^rjtotic expansion  for the disturbance 

52 
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potential, vis: 

a«l 

-»ere t1"*11 • o(*Wi . 16.2) 

Furthermore, we shall follow Tack and siaolv take 

*M  » Öle11! . Co.31 

Here c is the parameter denoting the shallovness of the 

water so that its definition could be 

x. y « 0(1) ;  x » O(c) . (6.4) 

x  ,    y  ,     z    being inside the fluid reaicn. 

It follows from Eq. (6.4? that differentiation can 

chanoe the order of uaunitude of a quantity.  Thus 

(6.5) 

and ^ = 0(e*J) . 

Ke say now substitute the expansion, Eq. (6.1), into the 

Laplace equation, Eq. f2.5>.   Due to the assumptions of 
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Eqs. (r*.3) and C6.S), we »ay separate the lowest order term 

in Eq. (2.5),  Thus 

«(l*   - 0 . (6.6) 
Z 2 

Sxailarlv, the bed condition, Eq. (2.11), yields 

[«"•.] ~ . * 0 . (6.7) 

Fro« Eos. (6.3) and (6.7) we see that a*1'  is not a 

function of z , i.e. 

iC1) = A(I)(x,y) . (6.8) 

The series, r.a. (6.1), is now substituted in the kine- 

natic condition, Eq. (2.7).  Also, the Laplace equation gives 

• «».-•«W.-O (6.9) 

and ^(3)2 = - (z + d) 722D A
(1) , (6.10) 

3*      32 
wnere ' 2D   ->X2   3y2 

So the condition becomes 



55 

[•<3,/Uo-<(1)
t-^x = 0. 

where  c    is the first approximation to the value of  ^ . 

The last boundary condition needed is the dynamic con- 

dition on the free surface, Eq. (2.9).  This results in 

[•(1)t " c •
(1)J 2=0 + p/o * g K

a)   = 0 .    (6.12) 

The last three equations are utilized to produce the 

(i) 
equation t-> be solved for A " : 

-*d L(1 ' ^    xx + A  yyj + A 
) 
tt 

-2cA(1)xt-cA
(1>x = £px .     (6.13) 

The method of solution for A    is similar to that 

used in Sec. (2.2) for 4> .  A double Fourier transform 

(Eq. (2.12)) with respect to x and y  is made, and this is 

followed by the substitution given by Eq. (2.19).  The result 

of these two operations is 

Xtt + gd(w
2 + u2)x = —-P'exp(-iws(t)) .     (6.14 
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The similarity between the previous equation and the 

corresponding one for finite depth should be observed-   The 

Laplace transform (Eq. (2.13)) of Eq. (6.14) is t3ken, and 

the convolution theorem applied.   Then the double inverse 

Fourier transform is used to give the first approximation to 

the shallow water potential: 

oo      oc 

*(1)fx,y,z,t) i    ([       f        f 
n2o/gd il 

c » 

n' d ;(T> dx   dw  d\ 

-:• — X- 

W _. , rs ^•sinf/gd-k« (t - T)]X 

*exp[i(w(x - x' + s(t) - s(O) I • ui (y - y') ) 1 r     '    1 >) 

with k2 = w? + u2 . 
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6.3 - WAVE RSSISTANCE:- 

The first approximation to the resistance is just 

R (1) p ,(1)  dS . s   x 

The dynamic condition on the free surface, Eq. (6.12), is now 

employed, as detailed in Sec. (3.2).  The final result, after 

simplification is 

R (1) 
TT2C9 

C(T) dT dw du w2.["l .p2+p2+Q2+Q 
e    o    e .•] 

xcos[»/gd»k» (t - T) ] •cos[w(s (t) - S(T))] .   (6.16) 

It is interesting to compare this result with that for 

finite depth, namely Eq. (3.13).   The shallow water result 

can be obtained simply by letting d -> 0  in the latter to 

the extent that  tanh(kd) is replaced by kd . 

The steady state resistance can be obtained either as 

the limit of Eq. (6.16) as  t «*• oo  (if the velocity is held 
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constant), or by allowinq  d  to apcroach zero in Eq. (3.24) 

The result follows: 

(1) 

T 

f 
2*oq ,<rd

2  - l j 
w2.(P 2 + P 2 + Q 2 + Q 2) dw , 

e    o   ^e    o 

where 

and 

p
e 

= pe
(w'u) ' etc- ' 

U = W'/F,2 •- 1 . a 

(6.17) 

(6.18) 

The relation between the transverse and longitudinal 

wave numbers, Eq. (6.18), shows that there is a fixed angle 

between the wavefronts and the y axis.  This ancjle is 

given by 

• arccos(l/Fj . (6.IP 

If F, < 1  there are no free waves satisfvina Eq. (6.19) a 

and the wave resistance is zero« 
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6.4 - ELEVATION OF THE FREE SURFACE:- 

The free surface elevation may be found from substitut- 

ing the potential, Eq. (6.15), into the dynamic condition, 

Eq. (6.12).   Employing the standard rules for differentiating 

an integral expression, it is found that 

(1>   = - Z- + A- pg      4 7Tz og 
M 

p»   dS' c(T)   dT dw du 

•oo —CXJ 

wcos[*/gd«k» (t -   r)]* 

*sin[w(x - x'   + s(t)   -  S(T))   + u(y - y')]   . (6.20) 

On the other hand, if we restrict our attention to 

pressure distributions which are symmetric about the  x  and 

y axes, such that 

P  = Q  = Q  = 0 , o   e   o 

then Eq. (6.20) may be simplified to 
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(1) = - E- + 
oq   n'og 

aw du C(T)«w«P * e 

*cos[^d-k-(t - i)]«sin[w(x + s(t) - s (x)) 1 »cos (uy) di . 

(6.21) 

6.5 - STEADY-STATE RESULTS:- 

A comparison of shallow water and finite depth theory 

is made in Fig. 19.   The case of a smooth three-dimensional 

pressure distribution is depicted in Fig. 19a.   It is seen 

that a depth to half-length ratio of  0.25  is essentially 

shallow if  1/Fd
2 <   0.5 . 

The wave resistance of a sharp three-dimensional dis- 

tribution is shown in Fig. 19b.   The convergence of the 

finite depth resistance to the shallow water one is per- 

haos not so ranid her".   An interesting feature of the 

shallow witer rrsul' Ls the knuckle in the resistance curve 

'•..    !3     (The other sudden changes in slope in the 
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curve are due to the fact that a finite number of points have 

been computed to define it.)   For this pressure distribution, 

it is possible to perform the intearation in Eq. (6.17) analyt- 

ically.  Using Gradshteyn and Ryzhik (1965, p. 451, 3.828, 

Formula 9), the result may be written down as 

F 2 

a    *d 
Rc = b'2(Fd2 - i)#    

if  Fd > Fd, 

(6.22) 

V 
if  F, < F 2(Fd2 - 1) 'd ^  di ' 

-V 

where     Fd = /a2/b2 + 1 . 

Thus, the resistance is continuous at a depth Froude 

number equal to F.  but the slope is not.   It is easily 

verified that when F, = F,  , the wave pattern appears as in 

Fig. 20.   Apparently there is a reinforcement between the 

bow and stern wave systems at this particular speed, causing 

the observed knuckle. 

In Fig. 19a a slight hump is also discernible at this 

depth Froude number, but due to the finite values of the 

pressure fall-off parameters the slope of the resistance 

curve is continuous. 
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6.6 - ACCELERATED MOTION:- 

In order to examine the phenomena exhibited in the two- 

dimensional wave resistance curves of Sec. (5.1) , we shall 

consider the free surface elevation due to the motion of a 

pressure band given by Eq. (4.2).   The Köchin function,  P  , 

qiven by Eq. (4.8) is then substituted into Ea. (6.21). 

The two-dimensional limit as b * » is obtained, by use of 

Eq. (3.18) to evaluate the  u  integral and the result is 

-<1> = . E_+ _El  dw 
og  pga 

o  6 

c(T) •W'cosiv/gd«w» (t - T)J> 

i /  ,  /i\   «/\\i   s in (aw)   , <sm[w(x + s(t) - s(i))].sinh(TO/2tt) dr . (6.23) 

We now apply the formulas for the products of sines and 

cosines, twice, to give 

(1) dw 

0   0 

c(i)»wx 

coslwtt'gd* (t - :) + j (x + s(t) - S(T) - ia) ) j 
sinh (irw/2a) 

d 6.24) 

4) ,  i  Tvl     ... the siuns c t: the appropriate 

'••'•>--    m.;      -!'-' .-> lotni of < oi\r   \ erms in i.he double 
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summation. 

The w integral may now be done usinq Gradshteyn and 

Ryzhik (1965, p. 511, 4.111, Formula 2): 

t 

pg   tJJ.J1   4Pq 
C(l) x 

xsech2[a(./gd« (t - T) + j (x -»- s(t) - s(T) - ia> ) ] d- . (6.25) 

Further restricting our interest to a sham pressure 

band, so that  ot +  °° , it is seen that the integrand is zero 

except when 

/gd*(t - T) + j (x + s(t) - S(T) - ia) = 0 .     (6.26) 

Let us say that this occurs when T = t4  and the velocit- of 

the band is c(ti) = c2 , while the distance traveled is 

s(ti) = Si .   In the neighborhood of  T = tj , we put 

T = t, + T' , 

where  i'  is small as  a •*• °°   .   The araument cf the hyper- 

bolic secant in Eg. (6.25) may then be reexDressed in the 

region where  r r t  .   It is just 

T = - a (/gd + jc^-i' . 
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Tfj« wave resistance of this sham oressuro band nay tv> 

derived fro» the fonrjia: 

I   »IV»],., 

"Hie resistance coefficient then follows: 

i. •••r dj_ 

dj 

(6 . vi;, 

and    tj     is no** the solution of 

/qS*it - t,)   •  j(s(t)   -  s(t,)   •   it  - i)<=     =  0.      (6.31) 

The shallow water resistance is olotted as a function 

of time in Fig. 21.  This is for a constant acceleration. 

At one point the resistance becomes infinite, and at another 

it becomes negatively infinite.  Ti.is second ceak corres- 

ponds closely with the negative humr> oredicted by the finite 

depth theory for the same deDth and acceleration (Fio. 12e). 

Apoarently the positive hump does not show UD in finite denth 
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theory.   It should be noted that the positive hump in the 

shallow water theorv is snoother than the neaative one in 

the sense that the latter has an infinite discontinuity in 

function value. 

Fia. 2 2 shows the shaoe of the water surface at dif- 

ferent Staues of the motion of Fia. 21.   Initially, the de- 

pression is due only to the static pressure under the pres- 

sure band.   As time progresses a pile of water   ilds UP 

aliead of the bow and this develops into an infinite peak at 

the critical depth Proude number (F = 1).   ~\t   the same tine, 

a negative peak develops hist inside the st«rn.  The pair of 

peaks causes the positiv.- hump sho'-'n in Fj i, 21. 

Bevond the critical speed these peaks cannot kee.? UP 

with the ACV, and are seen to move back relative to Lt.   At 

a second critical point in time, the bow peak passes under 

the stern of the pressure band and the resistance suddenly 

drops to minus infinity.   Thereafter, the water surface in 

the vicinity of the ACV levels out, and the wave resistance 

approaches zero. 

An inspection of Eq. (6.30) shows that the peaks in the 

resistance curve occur when  i - -1  and  F,  = 1 .   Look- 

ina now at Eq. (6.31), this can happen when: 

i: t = t2 ,  F, « 1 . 

This   •      '.':       :ase    >!       K L J. T3      other   p;..1 s.ibility 

IS ' 
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t  = -i: »^•(t - ti) - (s - Si ' 2a) =-- 0 . 

This case corresponds to the neqative peak. Of the two con- 

ditions represented by the latter equation, the only one that 

satisfies the relationship  0 < tj < t is 

Eq. (6.32) gives the value of t when the spike of 

water generated at the bow passes under the stern of the 

pressure band. 

If we now return to the special case of a constant ac- 

celeration  c , Eq. (6.32) becomes a quadratic in  t .   The 

depth Froude number which locates the neqative humo is then 

given by the formula: 

F, = 1 + 2 /ac/gd . (6.33) 
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F.q. (6.33) is plotted in Fiq. 23, toqether with some 

points representinn the location of the neaative hump Tor a 

finite depth.   As expected, the agreement is better for 

shallower depths and sharper pressure distributions. 



7 - THE INVERSE PROBLEM 

7.1 - PROBLEM STATEMENT:- 

An object of interest in the design of an \CV  is to 

know th~ attainable acceleration pattern as a function of the 

characteristics of the propulsor.   Hence, other items of 

concern, such as the acceleration margin at the hump speed, 

may be deduced. 

In order to make the study realistic, one must include 

all the components of resistance. These were described in 

Sec. (1.1).   We use Newton's law to obtain 

T - D  - D  - R = mc , (7.1) 

where T  is the thrust available, D. is the aerodvnamic or 

profile drag,  D  is the momentum draq and m  is the mass 

of the craft.   The problem definition could be made more 

elaborate by including, for example, an estimate of the water 

contact resistance.   It is emphasized here that this break- 

down into drag components is only an idealization of the true 

situation in which there are interactions among them. 

In Eq. (7.1), the terms on the left-hand side arc func- 

tions of speed, or acceleration pattern - which are unknown. 

We shall assume the following forms of these resistance com- 

ponents : 

69 
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DA = 
— C  A 
2 L'D * F A 

(7.2) 

and DM = 
mA c (7.3: 

where  C   is the aerodvnamic drag coefficient of the craft 

based on  A„ , the frontal area, while  cA  is the air den - 

sity and  m   is the mass flow rate into the air cushion. 

The program used to solve Eq. (7.1) is described by Doctors 

(1970, Sec. (10.3)). 

Let us now limit the numerical investigation to a single 

craft.   The data are given meaning by relating them t«~» a 

particular (dimensional) machine, below.   The results will 

also apply to any scale model of this craft. 

DIMENSIONAL VARIABLE DIMBNSIONLESS ^AHIAJU-E 

P 1.94     slugs/ft.3 
(base unit) 

q 32.2      ft./sec.2 
(base unit) 

a 20        ft. (base unit) 

b 10        ft. b/a 0.5 

a 0.25     ft."1 a a       = 5 

fl 0.25     ft."1 3a 5      1 
W = 25,000        lbf. pga/po 40 

n 0.002425 sluqs/ft.3 . • a3 'm ". r- 
r   • 
r F ! 6 0 2 m " H 'i. .. '     105 

f'nA 7.334    slug3/sec. 
•\ 

0 .OP1^ 
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7.2 - RESULTS FOR UNSTEADY MOTION:- 

Fig. 24 shows the effect of applying three different 

constant thrust levels to the ACV.   At the hump speed the 

wave resistance is of the same order as the two other draq 

components combined.   Onlv one other minor hump is dis- 

played, as was also the case for a constant acceleration 

level.   Thus the character of the wave resistance curve is 

not grossly affected by the nature of the acceleration pat- 

tern - provided it is reasonably smooth.   At the lowest 

thrust level (0.06 of the craft weinht) the acceleration mar- 

gin at the hump is only about  0.02q which could be inade- 

quate for a practical machine. 

The same craft running over finite deoth is presented 

in Fig. 25.   Similar qeneral trends are displayed.   However, 

the thrust margin at the hump speed is slightlv reduced, but 

thereafter the wave resistance droos somewhat faster than in 

deep water. 

The corresponding velocity patterns are shown in Fias. 

26 and 27.   The curves are quite smooth despite the humns 

in the wave resistance.   The effect of depth is seen to be 

small for this case - the drop in velocitv in the renion of 

the hump due to finite depth is less than 10%.. 

Some calculations were also performed usina an enaire- 

driven airscrew to push the craft rather than a constant- 

thrust device.   The propeller used was a four-bladed Clark Y 

Section screw (Propeller Reference Number 5868-9).   The 

characteristics of this propeller were measured by Hartman 
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and hiermann (1937).   The diameter, D , was 10 ft. and the 

blades had a nominal angle of 20° at the three-quarter Iadial 

point.   The table below lists the thrust and torque coeffici 

ents,  K^  and  K  , as a function of the advance ratio,  J , 

where 

KT   =  T/.)AN2DU    , (7.4) 

KQ  =  Q/pAN=D5 (7.5) 

and J     =   c/ND   . .6) 

Here  Q  is the propeller torque and N  its speed in v.svo- 

lutions per unit time. 

J 

0 

0.1 

0.2 

0.3 

0„4 

0.5 

T 

0.187 

0.185 

0.181 

0.175 

0.161 

0.14° 

n 

0.0189 6 0 120 

0.0188 0 7 0 9 7 

0.0186 0 8 0 072 

0.0185 0 0 0 045 

0.0180 1 0 0 016 

0.0' ] 

T ( 

0.1      5 

o . r • - •' 

0 . MM     C   • 

'  . 00    a 
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Fig. 28 shows the variation of drag components with time, 

assuming that the propeller absorbs a power,  P , given by 

P = 3.804xl05 ft.lbf./sec.  (692 H.P.) , 

or       P/maV*g3/2 = o.6 . 

The results are very similar to those in Fig. 24 for a   cons- 

tant thrust.   This is because the prooeller advance ratio is 

still small at the hump speed - and ur> to this speed  K^ 

and  K  are almost constant 

The case of a constant propeller speed of revolution is 

treated in Fig. 29.   Fig. 29a  hows the resistance components 

when the propeller runs at a speed given by 

N = 25.38 r.p.s. , 

or N/a7g = 20 . 

Again, the thrust drops only slightly in the speed ranae in- 

volved, so the results are similar to those for a constant 

thrust, or a constant enaine power.   In Flos. 29b and 29c 

the craft is overloaded by 50% and 100%, resoectivelv.   Only 

the weight (and cushion pressure) were increased, and all the 

other dimensional data were held fixed.   Since the wave 

drag is proportional to the square of the cushion pressure, 

this component becomes relatively more important in cases of 
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overload.   For the 100" overload situation, the machine bnro« 

ly surpasses the hump. 

The case of the same propeller speed of revolution, but 

over finite depth, is handled in Fiq. 30.   ^or a normal load 

(Fiq. 30a), or a 50% overload (Fig. 30b), the draq components 

follow quite closely the corrospondinq curves for deep water 

qiven in Figs. 29a and 29b, respectivelv.   However, for a 

100% overload (Fiq. 30c) the situation is quite different in 

finite depth. 

Here the craft apparentlv does not overcome the resis- 

tance hump in the time shown.   At first, it seems to onlv 

just cross the (unsteady) hump.   Then the wave resistance 

rises - probably because the almost zero acceleration at this 

time allows the shallow water wave pattern to build up, thus 

approaching a nearly steady state.   The total draq (being 

essentially the same as the wave resistance now) is greater 

than the thrust so that the craft decelerates to belo-,: the 

hump speed.   Without extending the calculation to a cueat- 

er time limit, it is difficult to predict whether the V V 

would cross the hump, approach a steady-state sub-humo speed, 

or settle down into a repetitive cvcle. 

The velocity pattern for the above-mentioned thr.»e load- 

ings is shown in Figs, 31 and 32.   In deep water (Fici. 31) 

Lt is seen that while a 50" overload is tolerable for this 

craft, a 130 J overlord could prevent humn speed beinu achiev- 

ed i.n or:1:: tice .   T.:i [\\i '•  — ' '• (F' '. "l\    the rr,qi >n o\'  de- 

celeration for ' 10Q" o" :•" 1 •'• ' ••' ' " pow nice c'ucrlv re^ •?•;•! %d . 
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The main assumption here is that the prcpeller and en- 

gine characteristics at any instant of an unsteady motion can 

be estimated on a quasi-steady basis using only the instan- 

taneous craft speed, thus ignoring inertia and time history 

effects.   (In fact, the only quantity treated in a truly un- 

steady f'.shicn here is the wave resistance.)   The calculated 

results, retrospectively, seem to confirm the validity of thi: 

assumption.  The required changes in propeller speed of ro- 

tation (under the constraint of constant power) and thrust 

(under the constraint of constant propeller speed) are indeed 

quite small.   Thus the system of the propeller and engine is 

effectively operating at a nearly steady state. 

7.3 - QUASI-STEADY RESULTS:- 

One might now consider the effect of a further simpli- 

fication, namely the assumption that the wave resistance can 

also be treated on a quasi-steady basis.   In other words, 

the wave resistance (as well as the other drag components) 

at any instant of the unsteady motion is assumed tc be in- 

dependent of acceleration and time history - and just equal 

to the steady-state value at the instantaneous velocity. 

This technique could make use of the steady-state results 

previously calculated in Sec. (4.3), which incidentally 
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require much less computational effort» 

Fie. 3i is the quasi-steady analoo of Fig. 24 ami »hows 

tue drag components over deep water for taree different 

thrust levels.   l.icte is generally little difference in the 

resultant notion i>ecause, as  was seen in S>c*   (5.2), the mag- 

nitude of the hump resistance in deep water is only slightly 

affected by this range of acceleration.   Moreover, tae 1 .-»v 

speed unsteady resistance curve tended to pass through the 

average value of t.ie oscillating steady-state resistance 

curve, and tnc effect of small local oscillations ir. resis- 

tance tends to be averaged out ir. the resultant velocity pat- 

tern. 

The effect of finite depth is shown in Fig. 34.   The 

difference compared witi the truly unsteady calculation 

(Fig. 25) is more discernible row - because of the higher 

steady-state hump encountered in the quasi-steady calcula- 

tions.  This aspect is more clearly seen in Figs. 3. ans *6 

which display the velocity patterns for deep  water and finite 

depth, Respectively.   For comparison, the unsteady curves 

are also shown.   In deep water there is little difference, 

but for d/a = 0.5 , the patterns separate slightly TT^ it 

the hump speed for the reasons cited above. 

Tne result of employing the propeller previously des- 

cribed (with a constant speeä of revolution) is shown in 

Fi :.      • • ;  • ' -    ::    '- :-      ; l " !).25) •   A.; was ! •' • : 

in Sec. .'..;*,-. w c.'fecl .: .'    :J v.pon i. • • ireJ 

to a constint - .• - -   Bei -. * he i. mo ~p-  I, the 
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propeller produces an almost constant thrust.   In deep water 

the quasi-steady and unsteady results (Fig. 29) are again 

similar. 

For d/a = 0.25 , the .-notion of a normally loaded craft 

compares with that for the unsteady calculation (Fig. 30a). 

However, for a 50% overload, the quasi-steady calculation 

predicts that the ACV can only achieve a sub-hump speed while 

the unsteady theory (Fig. 30b) shows that the ACV, in fact, 

has a practical thrust margin to surpass the hump resistance. 

In the case of 100% overload the unsteady result (Fig. 30c) 

shows that the machine is in a marginal position regarding its 

ability to achieve a practical cruising speed.   The quasi- 

steady calculation, on the ether hand, would indicate that 

the craft considerably lacks the ability to cross the hump - 

it would seem to have only about half of the thrust required. 

The velocity patterns for a constant propeller speed of 

revolution are shown in Fig. 39 (deep water) and Fig. 4 0 

(d/a = 0.25).   These clearly indicate the marked difference 

between the predictions of the quasi-steadv and unsteady cal- 

culations - particularly for finite depth. 



£ - CONCLUDING REMARKS 

8.1 - CONCLUSIONS:- 

A large number of results have been presented, and the 

reader is referred to the appropriate section for the de- 

tails.   However, some general remarks should now be made, 

and the first of these concerns the degree of smoothing re- 

quired to eliminate the low speed oscillations in the steady- 

state wave resistance curves. 

Preference is now made to Fig. 2 showina the pressure 

distribution.   We shi. 11 take  Ja = w since this parameter 

hardly affects the resistance.   The slope of the free sur- 

face at the center of the bow (x = a, y = 0), at zero speed, 

is then given by 

^-^[l -sechM2«a, 

For  ~,a > 2  the second term nay be dropped to give 

r 4= SEJL . (8.1) 
'X   2 ng 

F~>mc   caloulaU    v-   lv    !
O'UM;   (liM-6),   "or  expr'-lc,   indic- 

ate  tlin'    t: '  •   sjeno   i <•• Mil    (_>' * i       oi   unit*'. ir LIu-rmoro, 

for   typical     CVs,   tl•<.    ratio     rna/p0     is  about   40.        '»nnce 
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Eg. (8.1) would yield  aa =80  as a general value.   The con- 

clusion in this regard then, is that a reasonable amount of 

smoothing is not sufficient by itself to eliminate the low 

speed humps and hollows«   Other effects, such as nonlinearity 

and real fluid properties, may have to he invoiced to exnlain 

the discrepancy. 

It is evident, however, that the use of low values or 

aa and  3a  (about 5) does improve the agreement between cal- 

culated and observed steady-state wave resistance curves, er- 

pecially at lower speeds.   Thus the use of such values, even 

if unnecessary from the point of view of accurate pressure 

modelling, could still be justified if  aa  and  °a  are re- 

garded as semi-empirical factors introduced, to effectively 

eliminate the unrealistic linear effects at low Froude num- 

bers.   Two advantages will accrue. 

First, the inverse problem can be treated with more con- 

fidence since it requires a continuous calculation of wave 

resistance for the entire speed range beginning from zero and 

one can avoid the unrealistic phenomena which would occur for 

a sharp pressure distribution. 

Second, the computational effort involved in evaluating 

the various integrals is considerably reduced due to the ex- 

ponential decay of the integrands at infinity if  aa and  ?a 

are finite and small.   In fact the corresponding calculations 

for a sharp pressure distribution would be formidable, as dis- 

cussed in Sec. (8.2).   Thus there is also a practical and 

economical advantage in the use of these adjustable constants. 
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Mcst of tlie figures show a marked similarity between the 

two- and three-dimensional results. Thus the transverse wave 

system plays a large role in contributing to the energy radi- 

ation for the usual beam to length ratios of ACVs. On the 

other hand, the diverging waves are sufficiently important to 

prevent the occurrence of negative wave resistance durinn ac- 

celerated motion of the craft from rest in finite depth. 

The effect of acceleration level on the wave resistance 

is quite marked.   Normal accelerations of up to 0.1c are 

sufficient to eliminate rost of the low speed humps.  Also, 

the high resistance peak at the critical depth Froude number 

is limited to a much smaller value in accelerated motion. 

However the resistance peak is displaced to a higher 

speed so that, the power needed to overcome it is hardly 

diminished, except in very shallow water. 

On the other hand, the practical design of an ACV results 

in the propalsive efficiency being a maximum near the design 

speed.   At low speeds, up to the hump, the thrust is essenti- 

ally constant.   Hence the critical thing i£ the peak wave 

resistance - and not the peak power to overcome it.   This was 

borne out by a comparison of the unsteady and quasi-stend\ 

theories for the solution of the inverse problem in finite 

depth.   Under certain circumstances the ACV could easi]** 

cross the hump, even though the quasi-steady theory predicted 

other- •; ^o . 
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8.2 - FUTURE WORK:- 

It would be worthwhile to run some experiments to veri- 

fy the calculations for accelerated motion.   Either the 

direct or inverse case could be tested since the theory is 

equally valid for both.   Correction for thr-  additional drag 

components is one of the problems to be contended with. 

A particular case that should be examined is the two- 

dimensional one.   It should be interesting to see how ac- 

curately the theory predicts the phenomenon of negative wave 

resistance. 

A few comments should also be addressed to the problem 

of computing the integral in Eq. (3.13).   The convergence of 

this integral deteriorates for large values of  t ,  a and 

3 .   This is because of the exponential decays in the Köchin 

function, Eq. (4.8).   The Gauss-Laguerre quadrature rules 

used are based on these decays.   Thus the majority of the 

resistance curves for accelerated motion, given in the figures, 

employed a rule of order 2048 for the w  integral, and a rule 

of order 16 for the u integral.   However, an estimation of 

the truncation error showed that, in fact, only the first 102 

and 9 points, respectively, were needed for a three-figure 

accuracy.   Generally, a 129-point trapezoidal rule was used 

in the T  integral. 

This combination of rules was found to be the best, al- 

though it would be useful to investigate other numerical quad- 

rature schemes. 

Because of the limitations of the numerical method - 
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specially for large  t  - an alternative technique of evalu- 

ating the integral should be considered.   For values of the 

velocity somewhat greater than the main hump speed, it should 

be possible to construct an asymptotic expression for the 

wave resistance (for large  t).   For the inverse problem, 

the asymptotic formula would have to be based on an extra- 

polated velocity pattern (which could be corrected iterat- 

ively). 

Finally, it may be remarked, that a nonlinear theoretical 

treatment of the problem would reveal more about the low speed 

oscillations in the resistance curve predicted by the linear 

theory. 

Following Wehausen (1963), one could assume the poten- 

tial to be a power series in terms of a perturbation para- 

meter such as  po/nga or po/pc2 .   It should then be fair- 

ly straightforward to construct a linear scheme of succe >s- 

ively higher approximations as has already been done for tlT* 

case of a ship in steady motion.   In fact, there is roc.' 

reason to believe that due to the absence of the hul' bound- 

ary condition, the numerical evaluation of the resulting in- 

tegrals here would be somewhat simpler than for a ship. 
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Fig. 22  Shallow Water Unsteady Free Surface Elevation (2D 

for Fig. 21,  (a) For  t/g7a = 0(2)18 
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This report i*  concerned with the theoretical wave resistance of an 
air-cushion vehicle (ACVJ traveling over vater of uniform finite c r in- 
finite depth» in steady or unsteady notion.   Referring first to steady 
notion, it is shown that the unrealistic oscillations in the vave resis- 
tance carve at low Fronde numbers fou"wJ by previous vorkers can be elim- 
inated by using a smoothed out pressure distribution rather than one 
with sharp edges studied exclusively in the past.  The ?*ain result cf 
unsteady notion calculations is that the pea* vave resistance in shal- 
low vater, even in noderately accelerated ^rotion, is appreciably less 
than the corresponding steady-state value.   In fact, cases have been 
found where an ACV starting from rest under the action of a constant 
thrust would sees to be unable to cross the critical depth Froude nurjM»? 
on the basis of quasi-steady estimates zf  vave resistance, while the 
•ore elaborate unsteady calculations shov that it has sufficient Dover 
to reach its final supercritical cruising spe&Z.        *r. :r.t ere« ting fea- 
ture of unsteady sotion is that besides vave resistance there is an- 
other nechanisn transferring energy to the free surface which is here 
called the dynandc sustention power.  Contrary tc intuition, the wave 
resistance in unsteady notion ever finite depth sonetines becomes nega- 
tive at supercritical Froude numbers before finally approaching zero 
at infinite speed. 
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